普通的队列是一种先进先出的数据结构,元素在队列尾追加,而从队列头删除。在某些情况下,我们可能需要找出队列中的最大值或者最小值,例如使用一个队列保存计算机的任务,一般情况下计算机的任务都是有优先级的,我们需要在这些计算机的任务中找出优先级最高的任务先执行,执行完毕后就需要把这个任务从队列中移除。普通的队列要完成这样的功能,需要每次遍历队列中的所有元素,比较并找出最大值,效率不是很高,这个时候,我们就可以使用一种特殊的队列来完成这种需求,优先队列。
优先队列按照其作用不同,可以分为以下两种:
最大优先队列:可以获取并删除队列中最大的值
最小优先队列:可以获取并删除队列中最小的值
最大优先队列
我们之前学习过堆,而堆这种结构是可以方便的删除最大的值,所以,接下来我们可以基于堆区实现最大优先队列。
最大优先队列API设计
最小优先队列
最小优先队列实现起来也比较简单,我们同样也可以基于堆来完成最小优先队列。我们前面学习堆的时候,堆中存放数据元素的数组要满足都满足如下特性:
- 最大的元素放在数组的索引1处。
- 每个结点的数据总是大于等于它的两个子结点的数据。
其实我们之前实现的堆可以把它叫做最大堆,我们可以用相反的思想实现最小堆,让堆中存放数据元素的数组满足如下特性:
- 最小的元素放在数组的索引1处。
- 每个结点的数据总是小于等于它的两个子结点的数据。
这样我们就能快速的访问到堆中最小的数据。
最小优先队列API设计
索引优先队列
在之前实现的最大优先队列和最小优先队列,他们可以分别快速访问到队列中最大元素和最小元素,但是他们有一个缺点,就是没有办法通过索引访问已存在于优先队列中的对象,并更新它们。为了实现这个目的,在优先队列的基础上,学习一种新的数据结构,索引优先队列。接下来我们以最小索引优先队列举列。
索引最小队列实现
步骤一:
存储数据时,给每一个数据元素关联一个整数,例如
insert(int k,T t)
,我们可以看做k是t关联的整数,那么我们的实现需要通过k这个值,快速获取到队列中t这个元素,此时有个k这个值需要具有唯一性。最直观的想法就是我们可以用一个T[] items
数组来保存数据元素,在insert(int k,T t)
完成插入时,可以把k看做是items数组的索引,把t元素放到items数组的索引k处,这样我们再根据k获取元素t时就很方便了,直接就可以拿到items[k]
即可。步骤二:
步骤一完成后的结果,虽然我们给每个元素关联了一个整数,并且可以使用这个整数快速的获取到该元素,但是,items数组中的元素顺序是随机的,并不是堆有序的,所以,为了完成这个需求,我们可以增加一个数组int[]pq,来保存每个元素在items数组中的索引,pq数组需要堆有序,也就是说,pq[1]对应的数据元素items[pq[1]]要小于等于pq[2]和pq[3]对应的数据元素items[pq[2]]和items[pq[3]]。
步骤三:
通过步骤二的分析,我们可以发现,其实我们通过上浮和下沉做堆调整的时候,其实调整的是pq数组。如果需要对items中的元素进行修改,比如让items[0]=“H”,那么很显然,我们需要对pq中的数据做堆调整,而且是调整pq[9]中元素的位置。但现在就会遇到一个问题,我们修改的是items数组中0索引处的值,如何才能快速的知道需要挑中pq[9]中元素的位置呢?
最直观的想法就是遍历pq数组,拿出每一个元素和0做比较,如果当前元素是0,那么调整该索引处的元素即可,但是效率很低。
我们可以另外增加一个数组,int[] qp,用来存储pq的逆序。例如:在pq数组中:pq[1]=6;那么在qp数组中,把6作为索引,1作为值,结果是:qp[6]=1;
当有了pq数组后,如果我们修改items[0]="H",那么就可以先通过索引0,在qp数组中找到qp的索引:qp[0]=9,那么直接调整pq[9]即可