1、circuit breaker
es有很多的断路器,也就是circuit breaker,可以用来阻止各种操作导致OOM内存溢出。每个断路器都有一个限制,就是最多可以使用多少内存。此外,还有一个父断路器指定了所有断路器最多可以使用多少内存。
(1)父短路器
indices.breaker.total.limit,可以配置父短路器的最大内存限制,默认是jvm heap内存的70%
(2)fielddata短路器
field data短路器可以估算每一个field的所有数据被加载到内存中,需要耗费多大的内存。这个短路器可以组织field data加载到jvm内存时发生OOM问题。默认的值是jvm heap的60%。indices.breaker.fielddata.limit,可以用这个参数来配置。indices.breaker.fielddata.overhead,可以配置估算因子,估算出来的值会乘以这个估算因子,留一些buffer,默认是1.03。
(3)request circuit breaker
request circuit breaker会阻止每个请求对应的一些数据结构造成OOM,比如一个聚合请求可能会用jvm内存来做一些汇总计算。indices.breaker.request.limit,最大是jvm heap的60%。indices.breaker.request.overhead,估算因子,默认是1.
(4)in flight request circuit breaker
flight request circuit breaker可以限制当前所有进来的transport或http层的请求超出一个节点的内存总量,这个内存的使用量就是请求自己本身的长度。network.breaker.inflight_requests.limit,默认是jvm heap的100%。network.breaker.inflight_requests.overhead,估算因子,默认是1.
(5)script compilation circuit breaker
这个短路器可以阻止一段时间内的inline script编译的数量。script.max_compilations_per_minute,默认是1分钟编译15个。
2、fielddata
fielddata cache,在对field进行排序或者聚合的时候,会用到这个cache。这个cache会将所有的field value加载到内存里来,这样可以加速排序或者聚合的性能。但是每个field的field data cache的构建是很成本很高昂的,因此建议给机器提供充足的内存来保持fielddata cache。
indices.fielddata.cache.size,这个参数可以控制这个cache的大小,可以是30%这种相对大小,或者是12GB这种绝对大小,默认是没有限制的。
fielddata的原理之前讲解过了,其实是对分词后的field进行排序或者聚合的时候,才会使用fielddata这种jvm内存数据结构。如果是对普通的未分词的field进行排序或者聚合,其实默认是用的doc value数据结构,是在os cache中缓存的。
3、node query cache
query cache用来缓存query的结果,每个node都有一个query cache,使用的是LRU策略,会自动清理数据。但是query cache仅仅会对那些filter后的数据进行缓存,对search后的数据是不会进行缓存的。indices.queries.cache.size,控制query cache的大小,默认是jvm heap的10%。
如果只是要根据一些field进行等值的查询或过滤,那么用filter操作,性能会比较好,query cache
4、index buffer
index buffer用来存储最新索引的的document。如果这个buffer满了之后,document就会被写入一个segment file,但是此时其实是写入os cache中,没有用fsync同步到磁盘,这就是refresh过程,写入os cache中,就可以被搜索到了。然后flush之后,就fsync到了磁盘上。indices.memory.index_buffer_size,控制index buffer的大小,默认是10%。indices.memory.min_index_buffer_size,buffer的最小大小,默认是48mb。
index buffer,增删改document,数据先写入index buffer,写到磁盘文件里面去,不可见的,refresh刷入磁盘文件对应的os cache里面,还有translog一份数据
5、shard request cache
对于分布式的搜索请求,相关的shard都会去执行搜索操作,然后返回一份结果集给一个coordinate node,由那个coordinate node来执行最终的结果合并与计算。shard request cache会缓存每个shard的local result。那么对于频繁请求的数据,就可以直接从cache中获取了。与query cache不同的是,query cache只是针对filter的,但是shard request cache是针对所有search和聚合求的。
默认情况下,shard request cache仅仅会针对size=0的搜索来进行缓存,仅仅会缓存hits.total,聚合结果等等汇总结果,而不会缓存搜索出来的hits明细数据。
cache是很智能的,如果cache对应的doc数据被refresh,也就是修改了,那么cache就会自动失效。如果cache满了的话,也会自动用LRU算法来清理掉cache中的数据。
可以手动来启用和禁用cache:
PUT /my_index
{
"settings": {
"index.requests.cache.enable": false
}
}
在每个request中也可以手动启用或禁用cache:
GET /my_index/_search?request_cache=true
{
"size": 0,
"aggs": {
"popular_colors": {
"terms": {
"field": "colors"
}
}
}
}
但是默认对于size>0的request的结果是不会被cache的,即使在index设置中启用了request cache也不行。只有在请求的时候,手动加入reqeust cache参数,才可以对size>0的请求进行result cache。
缓存用的key,是完整的请求json,因此每次请求即使json中改变了一点点,那么也无法复用上次请求的request cache结果。
indices.requests.cache.size,可以设置request cache大小,默认是1%
GET /_stats/request_cache?human,监控request cache的使用
如果是search,默认是不缓存的,除非你手动打开request_cache=true,在发送请求的时候
如果是aggr,默认是缓存的,不手动打开request_cache=true,也会缓存聚合的结果
6、索引恢复
indices.recovery.max_bytes_per_sec,每秒可以恢复的数据量,默认是40mb