📆

刷脏导致的数据库性能抖动

 
当内存数据页跟磁盘数据页内容不一致的时候,我们称这个内存页为“脏页”。内存数据写入到磁盘后,内存和磁盘上的数据页的内容就一致了,称为“干净页”。不论是脏页还是干净页,都在内存中
平时执行很快的更新操作,其实就是在写内存和日志,而MySQL偶尔“抖”一下的那个瞬间,可能就是在刷脏页(flush)

数据库flush的时机

InnoDB的redo log写满了。

这时候系统会停止所有更新操作,把checkpoint往前推进,redo log留出空间可以继续写。我在第二讲画了一个redo log的示意图,这里我改成环形,便于大家理解。
redo log状态图
redo log状态图
checkpoint可不是随便往前修改一下位置就可以的。比上图中,把checkpoint位置从CP推进到CP’,就需要将两个点之间的日志(浅绿色部分),对应的所有脏页都flush到磁盘上。之后,图中从write pos到CP’之间就是可以再写入的redo log的区域。
 

系统内存不足

当需要新的内存页,而内存不够用的时候,就要淘汰一些数据页,空出内存给别的数据页使用。如果淘汰的是“脏页”,就要先将脏页写到磁盘。你一定会说,这时候难道不能直接把内存淘汰掉,下次需要请求的时候,从磁盘读入数据页,然后拿redo log出来应用不就行了?这里其实是从性能考虑的。如果刷脏页一定会写盘,就保证了每个数据页有两种状态:
  • 一种是内存里存在,内存里就肯定是正确的结果,直接返回;
  • 另一种是内存里没有数据,就可以肯定数据文件上是正确的结果,读入内存后返回。这样的效率最高。
 

系统“空闲”的时候

MySQL认为系统“空闲”的时候,会刷新脏页到磁盘
 

MySQL正常关闭

MySQL正常关闭的情况。这时候,MySQL会把内存的脏页都flush到磁盘上,这样下次MySQL启动的时候,就可以直接从磁盘上读数据,启动速度会很快。
 

flush磁盘对性能影响

第三种情况是属于MySQL空闲时的操作,这时系统没什么压力,而第四种场景是数据库本来就要关闭了。这两种情况下,你不会太关注“性能”问题。所以这里,我们主要来分析一下前两种场景下的性能问题。
第一种是“redo log写满了,要flush脏页”,这种情况是InnoDB要尽量避免的。因为出现这种情况的时候,整个系统就不能再接受更新了,所有的更新都必须堵住。如果你从监控上看,这时候更新数会跌为0。
第二种是“内存不够用了,要先将脏页写到磁盘”,这种情况其实是常态。InnoDB用缓冲池(buffer pool)管理内存,缓冲池中的内存页有三种状态
  • 第一种是,还没有使用的
  • 第二种是,使用了并且是干净页;
  • 第三种是,使用了并且是脏页。
InnoDB的策略是尽量使用内存,因此对于一个长时间运行的库来说,未被使用的页面很少。
而当要读入的数据页没有在内存的时候,就必须到缓冲池中申请一个数据页。这时候只能把最久不使用的数据页从内存中淘汰掉:如果要淘汰的是一个干净页,就直接释放出来复用;但如果是脏页呢,就必须将脏页先刷到磁盘,变成干净页后才能复用。
所以,刷脏页虽然是常态,但是出现以下这两种情况,都是会明显影响性能的:
  1. 一个查询要淘汰的脏页个数太多,会导致查询的响应时间明显变长;
  1. 日志写满,更新全部堵住,写性能跌为0,这种情况对敏感业务来说,是不能接受的。
所以,InnoDB需要有控制脏页比例的机制,来尽量避免上面的这两种情况。
 

InnoDB刷脏页的控制策略

  • 正确地告诉InnoDB所在主机的IO能力,这样InnoDB才能知道需要全力刷脏页的时候,可以刷多快。
这就要用到innodb_io_capacity这个参数了,它会告诉InnoDB你的磁盘能力。这个值我建议你设置成磁盘的IOPS。磁盘的IOPS可以通过fio这个工具来测试,下面的语句是我用来测试磁盘随机读写的命令:
fio -filename=文件 -direct=1 -iodepth 1 -thread -rw=randrw -ioengine=psync -bs=16k -size=500M -numjobs=10 -runtime=10 -group_reporting -name=mytest
read: IOPS=3072, BW=48.0MiB/s (50.3MB/s)(480MiB/10002msec) clat (usec): min=121, max=161398, avg=1385.08, stdev=3062.59 lat (usec): min=121, max=161398, avg=1385.28, stdev=3062.61 clat percentiles (usec): | 1.00th=[ 141], 5.00th=[ 143], 10.00th=[ 147], 20.00th=[ 151], | 30.00th=[ 157], 40.00th=[ 167], 50.00th=[ 190], 60.00th=[ 227], | 70.00th=[ 510], 80.00th=[ 2147], 90.00th=[ 4817], 95.00th=[ 7177], | 99.00th=[ 11076], 99.50th=[ 12780], 99.90th=[ 16057], 99.95th=[ 16909], | 99.99th=[152044] bw ( KiB/s): min=32608, max=67110, per=100.00%, avg=49191.52, stdev=905.91, samples=199 iops : min= 2038, max= 4194, avg=3074.37, stdev=56.63, samples=199 write: IOPS=3113, BW=48.6MiB/s (51.0MB/s)(487MiB/10002msec); 0 zone resets clat (usec): min=91, max=164685, avg=1839.54, stdev=3945.28 lat (usec): min=91, max=164685, avg=1840.12, stdev=3945.37 clat percentiles (usec): | 1.00th=[ 104], 5.00th=[ 108], 10.00th=[ 110], 20.00th=[ 115], | 30.00th=[ 120], 40.00th=[ 128], 50.00th=[ 143], 60.00th=[ 172], | 70.00th=[ 289], 80.00th=[ 3654], 90.00th=[ 6783], 95.00th=[ 9110], | 99.00th=[ 14222], 99.50th=[ 15926], 99.90th=[ 18744], 99.95th=[ 19530], | 99.99th=[160433] bw ( KiB/s): min=31456, max=69664, per=99.96%, avg=49790.41, stdev=971.45, samples=199 iops : min= 1966, max= 4354, avg=3111.71, stdev=60.72, samples=199 lat (usec) : 100=0.08%, 250=65.58%, 500=5.51%, 750=1.40%, 1000=0.79% lat (msec) : 2=3.21%, 4=7.78%, 10=12.85%, 20=2.77%, 50=0.01% lat (msec) : 250=0.02% cpu : usr=0.57%, sys=4.59%, ctx=123715, majf=0, minf=0 IO depths : 1=100.0%, 2=0.0%, 4=0.0%, 8=0.0%, 16=0.0%, 32=0.0%, >=64=0.0% submit : 0=0.0%, 4=100.0%, 8=0.0%, 16=0.0%, 32=0.0%, 64=0.0%, >=64=0.0% complete : 0=0.0%, 4=100.0%, 8=0.0%, 16=0.0%, 32=0.0%, 64=0.0%, >=64=0.0% issued rwts: total=30730,31138,0,0 short=0,0,0,0 dropped=0,0,0,0 latency : target=0, window=0, percentile=100.00%, depth=1 Run status group 0 (all jobs): READ: bw=48.0MiB/s (50.3MB/s), 48.0MiB/s-48.0MiB/s (50.3MB/s-50.3MB/s), io=480MiB (503MB), run=10002-10002msec WRITE: bw=48.6MiB/s (51.0MB/s), 48.6MiB/s-48.6MiB/s (51.0MB/s-51.0MB/s), io=487MiB (510MB), run=10002-10002msec Disk stats (read/write): sdd: ios=30446/30814, merge=0/1, ticks=5759/4029, in_queue=0, util=97.67%
SHOW VARIABLES LIKE 'innodb_io_capacity%'查看MySQL的配置
notion image
其实,因为没能正确地设置innodb_io_capacity参数,而导致的性能问题也比比皆是。之前,就曾有其他公司的开发负责人找我看一个库的性能问题,说MySQL的写入速度很慢,TPS很低,但是数据库主机的IO压力并不大。经过一番排查,发现罪魁祸首就是这个参数的设置出了问题。
他的主机磁盘用的是SSD,但是innodb_io_capacity的值设置的是300。于是,InnoDB认为这个系统的能力就这么差,所以刷脏页刷得特别慢,甚至比脏页生成的速度还慢,这样就造成了脏页累积,影响了查询和更新性能。
虽然我们现在已经定义了“全力刷脏页”的行为,但平时总不能一直是全力刷吧?毕竟磁盘能力不能只用来刷脏页,还需要服务用户请求。所以接下来,我们就一起看看InnoDB怎么控制引擎按照“全力”的百分比来刷脏页。
根据我前面提到的知识点,试想一下,如果你来设计策略控制刷脏页的速度,会参考哪些因素呢?
这个问题可以这么想,如果刷太慢,会出现什么情况?首先是内存脏页太多,其次是redo log写满。
所以,InnoDB的刷盘速度就是要参考这两个因素:一个是脏页比例,一个是redo log写盘速度。
InnoDB会根据这两个因素先单独算出两个数字。
参数innodb_max_dirty_pages_pct是脏页比例上限,默认值是75%。InnoDB会根据当前的脏页比例(假设为M),算出一个范围在0到100之间的数字,计算这个数字的伪代码类似这样:
F1(M) { if M>=innodb_max_dirty_pages_pct then return 100; return 100*M/innodb_max_dirty_pages_pct; }
InnoDB每次写入的日志都有一个序号,当前写入的序号跟checkpoint对应的序号之间的差值,我们假设为N。InnoDB会根据这个N算出一个范围在0到100之间的数字,这个计算公式可以记为F2(N)。F2(N)算法比较复杂,你只要知道N越大,算出来的值越大就好了。
然后,根据上述算得的F1(M)和F2(N)两个值,取其中较大的值记为R,之后引擎就可以按照innodb_io_capacity定义的能力乘以R%来控制刷脏页的速度。
上述的计算流程比较抽象,不容易理解,所以我画了一个简单的流程图。图中的F1、F2就是上面我们通过脏页比例和redo log写入速度算出来的两个值。
InnoDB刷脏页速度策略
InnoDB刷脏页速度策略
现在你知道了,InnoDB会在后台刷脏页,而刷脏页的过程是要将内存页写入磁盘。所以,无论是你的查询语句在需要内存的时候可能要求淘汰一个脏页,还是由于刷脏页的逻辑会占用IO资源并可能影响到了你的更新语句,都可能是造成你从业务端感知到MySQL“抖”了一下的原因。
要尽量避免这种情况,你就要合理地设置innodb_io_capacity的值,并且平时要多关注脏页比例,不要让它经常接近75%。
其中,脏页比例是通过Innodb_buffer_pool_pages_dirty/Innodb_buffer_pool_pages_total得到的,具体的命令参考下面的代码:
mysql> select VARIABLE_VALUE into @a from global_status where VARIABLE_NAME = 'Innodb_buffer_pool_pages_dirty'; select VARIABLE_VALUE into @b from global_status where VARIABLE_NAME = 'Innodb_buffer_pool_pages_total'; select @a/@b;
接下来,我们再看一个有趣的策略。
一旦一个查询请求需要在执行过程中先flush掉一个脏页时,这个查询就可能要比平时慢了。
而MySQL中的一个机制,可能让你的查询会更慢:在准备刷一个脏页的时候,如果这个数据页旁边的数据页刚好是脏页,就会把这个“邻居”也带着一起刷掉;而且这个把“邻居”拖下水的逻辑还可以继续蔓延,也就是对于每个邻居数据页,如果跟它相邻的数据页也还是脏页的话,也会被放到一起刷。
在InnoDB中,innodb_flush_neighbors 参数就是用来控制这个行为的,值为1的时候会有上述的“连坐”机制,值为0时表示不找邻居,自己刷自己的。
找“邻居”这个优化在机械硬盘时代是很有意义的,可以减少很多随机IO。机械硬盘的随机IOPS一般只有几百,相同的逻辑操作减少随机IO就意味着系统性能的大幅度提升。
而如果使用的是SSD这类IOPS比较高的设备的话,我就建议你把innodb_flush_neighbors的值设置成0。因为这时候IOPS往往不是瓶颈,而“只刷自己”,就能更快地执行完必要的刷脏页操作,减少SQL语句响应时间。
在MySQL 8.0中,innodb_flush_neighbors参数的默认值已经是0了
一个内存配置为128GB、innodb_io_capacity设置为20000的大规格实例,正常会建议你将redo log设置成4个1GB的文件。
但如果你在配置的时候不慎将redo log设置成了1个100M的文件,会发生什么情况呢?又为什么会出现这样的情况呢?
每次事务提交都要写redo log,如果设置太小,很快就会被写满,也就是下面这个图的状态,这个“环”将很快被写满,write pos一直追着CP。
notion image
这时候系统不得不停止所有更新,去推进check point
这时,你看到的现象就是磁盘压力很小,但是数据库出现间歇性的性能下跌。
刷脏导致的数据库性能抖动