写入性能优化

1和2,适合的是,你的es java client程序,可以采取批量写的场景 3,比较通用的,比较合适的是,你对于写入数据到可以读到能够接受比较大的延迟 4,一次性批量导入数据的场景 5/6/7/8/9,通用型,尽量都去做到
1/2/3/4,都是有各自适用的场景,如果场景合适,就尽量用,因为对性能的提升都是很明显的
5/6/7/8/9,其中通用,尽量去优化你的集群,但是其中最重要的,就是3块,filesystem cache更大的内存,给index buffer最充足的内存,一个是用SSD固态硬盘
1、用bulk批量写入
你如果要往es里面灌入数据的话,那么根据你的业务场景来,如果你的业务场景可以支持,可以做到,让你将一批数据聚合起来,一次性写入es,那么就尽量采用bulk的方式,每次批量写个几百条这样子。
bulk批量写入的性能比你一条一条写入大量的document的性能要好很多。但是如果要知道一个bulk请求最佳的大小,需要对单个es node的单个shard做压测。先bulk写入100个document,然后200个,400个,以此类推,每次都将bulk size加倍一次。如果bulk写入性能开始变平缓的时候,那么这个就是最佳的bulk大小。并不是bulk size越大越好,而是根据你的集群等环境具体要测试出来的,因为越大的bulk size会导致内存压力过大,因此最好一个请求不要发送超过10mb的数据量。
之前有es学员就是在公司里测试这个bulk写入,上来就是多线程并发写bulk,但是这里面就有一个问题,刚开始,你先确定一个是bulk size,此时就尽量是用你的程序,单线程,一个es node,一个shard,测试。看看单线程最多一次性写多少条数据,性能是比较好的。
2、使用多线程将数据写入es
单线程发送bulk请求是无法最大化es集群写入的吞吐量的。如果要利用集群的所有资源,就需要使用多线程并发将数据bulk写入集群中。为了更好的利用集群的资源,这样多线程并发写入,可以减少每次底层磁盘fsync的次数和开销。一样,可以对单个es节点的单个shard做压测,比如说,先是2个线程,然后是4个线程,然后是8个线程,16个,每次线程数量倍增。一旦发现es返回了TOO_MANY_REQUESTS的错误,JavaClient也就是EsRejectedExecutionException,之前有学员就是做多线程的bulk写入的时候,就发生了。此时那么就说明es是说已经到了一个并发写入的最大瓶颈了,此时我们就知道最多只能支撑这么高的并发写入了。
3、增加refresh间隔
默认的refresh间隔是1s,用index.refresh_interval参数可以设置,这样会其强迫es每秒中都将内存中的数据写入磁盘中,创建一个新的segment file。正是这个间隔,让我们每次写入数据后,1s以后才能看到。但是如果我们将这个间隔调大,比如30s,可以接受写入的数据30s后才看到,那么我们就可以获取更大的写入吞吐量,因为30s内都是写内存的,每隔30s才会创建一个segment file。
4、禁止refresh和replia
如果我们要一次性加载大批量的数据进es,可以先禁止refresh和replia复制,将index.refresh_interval设置为-1,将index.number_of_replicas设置为0即可。这可能会导致我们的数据丢失,因为没有refresh和replica机制了。但是不需要创建segment file,也不需要将数据replica复制到其他的replica shasrd上面去。此时写入的速度会非常快,一旦写完之后,可以将refresh和replica修改回正常的状态。
5、禁止swapping交换内存
4
6、给filesystem cache更多的内存
filesystem cache被用来执行更多的IO操作,如果我们能给filesystem cache更多的内存资源,那么es的写入性能会好很多。
7、使用自动生成的id
如果我们要手动给es document设置一个id,那么es需要每次都去确认一下那个id是否存在,这个过程是比较耗费时间的。如果我们使用自动生成的id,那么es就可以跳过这个步骤,写入性能会更好。对于你的业务中的表id,可以作为es document的一个field。
8、用性能更好的硬件
我们可以给filesystem cache更多的内存,也可以使用SSD替代机械硬盘,避免使用NAS等网络存储,考虑使用RAID 0来条带化存储提升磁盘并行读写效率,等等。
9、index buffer
如果我们要进行非常重的高并发写入操作,那么最好将index buffer调大一些,indices.memory.index_buffer_size,这个可以调节大一些,设置的这个index buffer大小,是所有的shard公用的,但是如果除以shard数量以后,算出来平均每个shard可以使用的内存大小,一般建议,但是对于每个shard来说,最多给512mb,因为再大性能就没什么提升了。es会将这个设置作为每个shard共享的index buffer,那些特别活跃的shard会更多的使用这个buffer。默认这个参数的值是10%,也就是jvm heap的10%,如果我们给jvm heap分配10gb内存,那么这个index buffer就有1gb,对于两个shard共享来说,是足够的了。